CONVECTIVE INSTABILITY IN ICE I: APPLICATION TO CALLISTO AND GANYMEDE. A. C. Barr, R. T. Pappalardo, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, 80309-0392 (amy.barr@colorado.edu).

Introduction: Laboratory experiments measuring ice rheology suggest that it deforms under the influence of several non-Newtonian creep mechanisms, where the viscosity depends on both strain rate and temperature [Goldsbly & Kohlstedt, 2001]. Whether or not a fluid with purely temperature-dependent viscosity convects can be determined by comparing the Rayleigh number of the system to the critical Rayleigh number \((Ra_c, o) \), which depends on rheological, thermal, and physical parameters of the fluid layer. However, in a non-Newtonian fluid where viscosity depends on the strain rate (i.e., velocity), convection can only occur if a temperature or velocity perturbation is issued to the system to lower the viscosity and permit fluid motions. Therefore, whether convection occurs in an ice I layer depends on initial conditions, in addition to rheological, thermal, and physical properties of the layer.

We show new results for a scaling between the critical Rayleigh number and perturbation amplitude for grain boundary sliding rheology. This scaling can be used to determine the conditions required to initiate convection in the ice I shell of a generic icy satellite. We use this scaling to judge the convective instability of Ganymede and Callisto’s ice shells in the absence of tidal dissipation.

Rheology of ice I: Deformation maps for grain sizes \(d = 0.1 \text{ mm} - 10 \text{ cm} \) using the rheology of Goldsbly & Kohlstedt [2001] are shown in Figure 1. At the level of convective stress for a 150-km-thick ice shell within Callisto or Ganymede, \(\sigma \sim 0.1 \rho g \alpha \Delta T \), \(D \sim 0.2 \text{ MPa} \), the dominant ice flow laws are grain boundary sliding (GBS) \((Q^* = 49 \text{ kJ/mol}, n = 1.8) \) and basal slip \((Q^* = 60 \text{ kJ/mol}, n = 2.4) \). For GBS, the viscosity of ice depends on the grain size as \(d^{1.4} \).

Numerical Model: We have modified the finite-element convection model Citcom [Moresi and Gurnis, 1996; Zhong et al., 1998; Zhong et al., 2000] to implement a non-Newtonian rheology for ice. The rheology is phrased in non-dimensional terms. The Rayleigh number of the system to the critical Rayleigh number \((Ra_c, o) \) is generally defined as:

\[
Ra = \frac{\rho g \alpha \Delta T D^{(n+2)/n}}{\kappa D^2} \exp \left(\frac{\kappa D^2}{\rho g \alpha \Delta T} \right)
\]

where \(\rho \) is the ice density, \(g \) is gravity, \(\alpha \) is coefficient of thermal expansion, \(\kappa \) is thermal diffusivity, and \(D \) is the ice shell thickness. Whether or not the system can convect regardless of initial conditions depends on the activation energy and layer thickness.

Our model has been benchmarked using a Newtonian, temperature-linearized flow law with large viscosity contrasts up to \(10^4 \) [Blankenbach et al., 1989], and with non-Newtonian flow laws with \(n = 3 \) and viscosity contrasts of \(10^4 - 10^7 \) [Christensen, 1985]. In the vast majority of cases in the parameter space closest to the icy satellites, convective heat flux values (Nu) and internal temperatures (average T) agree with published simulations to within 1%.

Determination of Ra_cr: Existing convection literature generally defines \(Ra_{cr} \) for a non-Newtonian fluid as the minimum \(Ra \) where convection can occur, regardless of initial conditions [e.g., Solomatov, 1995]. Numerically, this amounts to starting the system from a pre-existing convection pattern, and watching whether convection continues after a change in \(Ra \) or rheological parameters. This definition of \(Ra_{cr} \) addresses the question: if the system were convecting initially, would it continue to convect after changing \(Ra \) or \(Q^* \)?

This definition of \(Ra_{cr} \) does not address the question of whether we expect convection to initiate in an icy satellite, where convection may starts from a conductive equilibrium. Modest temperature perturbations could arise from physical processes such as localized tidal dissipation or aggregations of rock.

We use an initial temperature field of form:

\[T(x, z) = T_s + \frac{1}{2} (T_m - T_s) + \frac{\delta T^*}{2} \cos(\pi x) \sin(\pi z) \]

where \(\delta T^* \) is the amplitude of initial temperature perturbation. In our model, the velocity field is initially calculated based on thermal buoyancy, so a temperature perturbation results in a velocity perturbation. We consider a range of \(\delta T^* \) from 0.005 to 0.1. Parameter sets where the amplitude of the initial perturbation grows with time are judged to be convectively unstable; if the perturbation decays with time and the system returns to conductive equilibrium, the layer and does not convect.

We define \(Ra_{cr} \) as the minimum \(Ra \) permitting convection for a given \(\delta T^* \). If there is no motion in the fluid initially, the viscosity of the layer becomes infinite, so we expect \(Ra_{cr} \to \infty \) as \(\delta T^* \to 0 \). We also expect \(Ra_{cr} \) to approach a finite value as \(\delta T^* \to 1 \), because this is roughly similar to starting the system from an initially convective temperature field. This value is denoted as \(Ra_{cr,1} \), and \(Ra < Ra_{cr,1} \) implies that the system cannot convect regardless of initial conditions.

Figure 2 shows where convection occurs for the pairs of \(Ra \) and \(\delta T^* \) used in this study. A fit to the \(Ra_{cr} \) data indicates that \(Ra_{cr} = Ra_{cr,1} (\delta T^*/\Delta T)^{\beta} \). Based on stability analyses...

1. Introduction

2. Results

3. Discussion

4. Conclusion

References

Acknowledgments

Support for this work is provided by NASA-GSRP grant NAG5-5037 and NASA Exobiology grant NCC2-1530. The authors wish to thank J. van Haren, S. Zheng, and P. Molnar for valuable discussions.